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An exact renormalization group equation in differential form is derived for spin 
systems with general many-body interactions in the van der Waals limit. This 
equation is solved and the free energy is determined as an integral along the 
renormalization trajectory in the interaction space. It is shown that the trans- 
formation can always be modified in such a way that an undetermined integration 
constant for the free energy vanishes exactly, also below the critical temperature. 
We also demonstrate how the invariance of the free energy under a parameter- 
dependent equivalence transformation can provide information about the critical 
behavior of the system. In this alternative approach "dangerous" irrelevant 
variables play an essential role. 
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1.  I N T R O D U C T I O N  

The renormal iza t ion  group approach  to critical phenomena ,  whether formu-  

lated in Four ie r  space (1) or in real space, (2) is always connected with a 

reduct ion of the degrees of  freedom of  the system and  a consequent  rescaling 

of  lengths. In  the limit where the strength and  inverse range of  in teract ion 
s imul taneously  go to zero, systems with weak, long-range forces become 
equivalent  to so called Weiss or van der Waals  models,  (3) for which the 

no t ions  of  " l e n g t h "  and  even dimensional i ty  lose their usual meaning.  
This rather  s ingular  s i tuat ion,  whose pr imary  physical consequence is the 

b reakdown of hyperscaling, requires a n o n s t a n d a r d  renormal iza t ion  group 

analysis. Such an analysis has been performed on the van der Waals  spin 
system by Knops  et al. (4) with a discrete block t ransformat ion .  In  order to 
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discuss the peculiar properties of the model, they had to solve the apparent 
inconsistency of transformation-dependent exponents by showing the pres- 
ence of "dangerous"  irrelevant variables? 

Even if it is exact, the renormalization group method used in Ref. 4 is 
rather complicated, v~hich contrasts, in some sense, with the relative simplicity 
of the model itself. What is more, their method suffers from a strong 
limitation, since they showed that below criticality their transformation could 
not be iterated indefinitely, not as one would expect in any renormalization 
group analysis. As a consequence, below criticality the free energy could not 
be computed by their renormalization method. 

Recently a differential form of renormalization in real space has been 
proposed by Hilhorst e t  al. (6) for the two-dimensional nearest-neighbor 
triangular Ising model. Some exact results were obtained by this method, (6'7) 
which has also been applied to a few other, simpler solvable models. (8'9) Flow 
equations in differential form are most suitable for discussing formal 
properties of the renormalization group. Even if equally exact, they are 
expected to be more powerful than the discrete transformations, particularly 
as far as the calculation of the free energy as an integral over the 
renormalization trajectory is concerned. A serious complication in the above 
differential approaches, however, is that one must introduce spatial inhomo- 
geneities and anisotropies which complicate the flow equations in interaction 
space. This difficulty has made it impossible up to now to obtain general 
solutions for the renormalization trajectories, and consequently to compute 
the free energy, except in the case of the one-dimensional Ising model. (9) 

In this work, we present an exact differential renormalization approach 
to the van der Waals spin system, which does not suffer from the limitations 
mentioned above in connection with Ref. 4. On the contrary, certain special 
features of the system--namely, the absence of length scale and dimension- 
al i ty--make it rather amenable to a differential renormalization treatment, 
without the introduction of inhomogeneities and other similar complications. 
We are thus able to solve the flow equation in interaction space and to 
compute explicitly the free energy. This is also possible below criticality 
and in the presence of symmetry-breaking fields. 

We believe that the scheme worked out and completely solved here 
represents an interesting realization of the differential renormalization tech- 
nique, even though the features connected with length scale and dimension- 
ality are evidently not present in our example. 

The plan of the paper is as follows: In Section 2 we explicitly 
describe the class of models considered, and we derive the flow equations 
in the simples t form. In Section 3 we solve this equation, and we determine 

3 An alternative approach, based on the limit theorems of probability theory, has recently 
been proposed for mean field models by Ellis and NewmanJ 5) 
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the free energy of the model as a trajectory integral along the flow lines. 
Section 4 is devoted to the pair-interaction model, and to the discussion of 
some problems encountered in the calculations when the initial Hamiltonian 
has certain features of symmetry breaking and metastable states. These 
problems are further and more generally analyzed in Section 5. It is shown 
that an arbitrariness in the definition of the transformation leads to different 
integral expressions for the free energy. The additional integration constant 
is shown to become zero for a certain set of normalizations for the trans- 
formation. In Section 6, a modified transformation is defined, which changes 
the behavior of the flow trajectories around the fixed point; the connection 
with the above-mentioned dangerous variables (4) is indicated. The final 
section is devoted to concluding remarks.; we also mention a difficulty and 
we suggest some possible extensions of  the approach. 

2. D E S C R I P T I O N  OF T H E  M O D E L  A N D  T H E  
I N F I N I T E S I M A L  T R A N S F O R M A T I O N  

The model that we want to study consists of a set of N "sp in"  variables 
Sj = +_ 1 ( j  = 1, 2 ..... N).  These spins interact via many-body potentials, 
which are invariant for the full permutation group of the N indices. In the 
thermodynamic limit, these potentials are scaled down to zero by appropriate 
powers of N, such as to make the energy a truly extensive quantity. As 
mentioned in the introduction, the notions of distance and spatial dimension 
become meaningless with interactions of this type. 

The Hamiltonian H of such a mean-field-type model can be written as 

- f lH( {S} )  = Ne(m) (1) 

where {S} indicates a particular configuration, fl = 1/kBT, and 

N 

m = U -1 Z Sj (2) 
j = l  

is the average magnetization, which can be treated as a continuous variable 
in the thermodynamic limit. We assume that e(m) is a regular function 
in the interval ( - 1 ,  + 1), and that e(0) = 0. 

The static thermodynamic properties of the system can be derived from 
the free energy per spin F, which is a functional of e(m), defined by 

- f l F  = lim N-1 In Z u = lira N-1 In Tr~s ~ exp[Ne(m)]  (3) 
N ~ oo N ~  oo 

Tr/s ~ indicates the sum over all spin configurations and ZN is the partition 
function of the system. 

One can easily compute F exactly. Introducing the entropy function 
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S(m) = In 2 - �89 + m) In(1 + m) + (1 - m) ln(1 - m)] (4) 

we can write 

N 
f_ i dm exp{U[e(m) + S(m)]} (5) Yris I exp[Ne(m)] ~- ~ 1 

asymptotically for large N. We thus obtain the result 

- f lF--  S(rh) + e(rh) (6) 

where rh maximizes the integrand of (5) and is then a solution of 

S(m) + O(rn) = 0 (7) 

where, to avoid notational confusion, we have used the dot to indicate 
differentiation with respect to m. To obtain in full generality the above simple 
result in a renormalization group context is not a trivial task. 

The idea at the basis of the renormalization group approach is to 
compute the partition function of the system in successive steps, by gradually 
thinning out the degrees of freedom of the system. This basic process of 
thinning out leads to the definition of renormalized effective interactions 
between the remaining degrees of freedom in terms of the original inter- 
actions. This is called the renormalization transformation. 

If  the fraction of eliminated degrees of freedom in one such step remains 
finite in the thermodynamic limit, we have a discrete transformation for the 
interactions. If we are able to realize this reduction of degrees of freedom 
in such a way that the eliminated fraction tends to zero in the thermodynamic 
limit, then the renormalization equations acquire a differential character and 
we can properly speak of a differential flow in interaction space. That it is 
possible to establish these kinds of exact differential renormalization 
equations for any lattice system is not at all evident. On the contrary, one 
could suspect that this possibility is connected with the existence of  a mapping 
of the star-triangle type for the model, c~ Up to now, indeed, these mappings, 
in combination with an ingenious use of inhomogeneities, anisotropies, and 
spatial domain boundary conditions, have been the only way through which 
one could consistently construct differential renormalization flows for 
realistic systems with short-range interactions.(6-9) The van der Waals system 
which we have just described, however, allows a very easy and natural 
construction of  the differential transformation without the necessity of star- 
triangle relations. 

The simplest way in which we can accomplish our task is to sum out 
one of the spin variables, e.g., SN, in the partition function Zu. This process 
can be interpreted as the construction of a system of N -  1 degrees of 
freedom with new effective interactions. The fraction of eliminated degrees 
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of freedom is 1/N,  which goes to zero in the thermodynamic limit. 
Let us define 

N - 1  

r n ' = ( N - l )  -1 ~ Sj (8) 
j=l 

The trace over S N of the original Boltzmann factor depends only on rn', 
thus defining a new effective Boltzmann factor for the transformed system: 

TrsN e x p [ N e ( m ) ]  =- exp[(N - 1)e'(m') + g] (9) 

By imposing, e.g., again e'(0) = 0, this equation allows us to determine both 
the transformed negative energy function e' and the constant term g. 

The crucial point is now that, at least in the thermodynamic limit, the 
sum over Su in (9) can be performed exactly by expanding e(m) around rn'. 
Omitting terms of order N-2,  which are not important in our analysis, we 
obtain 

g + (N - 1)e'(m') = N e ( m ' )  - m'~(m')  + ln[2 cosh ~(m')] + O ( N - 1 )  

o r  

and 

g = l n  2 + l n  cosh ~(0) 

(10) 

(11) 

I cosh O(m) 
e'(m) - e(m) = N -  1 e(m) - rnO(m) + in cosh ~(0) J (12) 

If we define a parameter s to keep track of our decimation rate by 

As = - A N / N  = 1 / N  (13) 

then the difference equation (12) transforms in the thermodynamic limit into 
a differential equation for the function e(m, s), the negative energy function 
depending on the flow parameter s: 

c?e cosh O(m, s) 
- e - m O  + In  ( 1 4 )  

~s cosh ~(0, s) 

Since we normalize e(0, s ) =  0 for all s, we may as well try to solve first 
for O(m, s), which obeys the equation 

c3~ ~3~ 
c~ + (m - tanh O) ~mm = 0 (15) 

This is a quasilinear partial differential equation ~1~ in the variables m and 
s. For  the interactions of the Ising model on the triangular lattice, Hilhorst 
et al. ~6) obtained a system of equations of  the same type, but with the 
spatial coordinates playing in some sense the role of  our magnetization m. 
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A nontrivial, regular fixed-point solution of (15) is given by 

~* = tanh -1 m (16) 

which is the same fixed point as found in Ref. 6. By integrating this solution, 
we find that 

e*(m)  = In 2 - S ( m )  (17) 

where S ( m )  is the entropy function (4). If  we linearize the transformation 
around this fixed point by assuming 

= ~* + ~(m) (18) 
we find 

8q;/Ss = r + O(~ 2) (19) 

This means that this fixed point is completely repulsive in all the directions 
in interaction space. 

Because of the repulsive character of this fixed point, the standard 
analysis of the critical region in terms of the linearized renormalization 
equations breaks down for this model. This was already pointed out by 
Knops et  al. ~*) These authors obtained the correct critical behavior of the 
system by taking into account the existence of equivalence transformations 
and dangerous variables. Although something analogous can be done for 
our differential transformation, as we will show in Section 6, it is more 
interesting to solve exactly the flow trajectories in the infinite-dimensional 
interaction space of the functions k(m). As we will see in the next section, 
it is then possible to obtain and compute an expression for the free energy 
F as an integral along these trajectories, thus deriving all the properties of 
the system, including the critical ones. In this analysis, the nonlinear effects 
of  the flow play a crucial role,  and these effects are usually disregarded 
in the standard renormalization equation analysisJ 1'2) 

3. SOLUTION OF THE DIFFERENTIAL EQUATION A N D  
CALCULATION OF THE FREE ENERGY 

In order to solve the flow equation (15), we may use the standard method 
of the characteristic curves. ~1~ These are given in parametric form by 

s = a + 2, m = be ~ + tanh ~, ~ --- c (20) 

where a, b, and c are integration constants and 2 is the curve parameter. The 
integration constants must be adjusted to the initial conditions. If, at s = 0, 
i.e., before we start renormalizing, we have 

a(m, s = 0) - ~b(rn) (21) 
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then by elimination of the integration constants in (20), we obtain the solution 
of (15) in implicit form by 

~(rn, s) = r  -s + (1 - e -s) tanh ~(m, s)] (22) 

The free energy corresponding to the Hamiltonian (1) is a functional 
of the energy function e(m).  It is thus natural to introduce an s-dependent 
function F(s), which is the free energy corresponding to the energy function 
e(m, s): 

F(s) =- F(e(m,  s)) (23) 

Our main interest of  course lies in F(0), the free energy corresponding to 
the original e(m)  = e(m, 0). 

By forming the trace over the N -  1 spin variables in (9), we obtain 

- f l U F ( e )  = - f i ( U  - 1)F(e') + g 

or, in differential form, 

~(flF)/~s = f i r  + 9 (24) 

The general solution of this equation is given by 

Even when the integral on the right-hand side can be evaluated exactly, there 
is no direct way to obtain information on the constant C from the re- 
normalization equations. It has been argued that analogous terms, appearing 
both with discrete (11~ and  with continuous (12~ transformations, may be 
neglected when there is no ordering field or spontaneous magnetization 
present. It is clear from (25) that C must be zero when the limit of e-SF(s)  
is zero for s going to infinity. The existence of this limit may be questionable 
whenever the renormalization trajectory flows away toward infinity in the 
interaction space. For  the rest of this section, we will simply assume C to 
be zero and concentrate on the integral (25). We postpone to the next two 
sections the discussion of whether the results obtained under this assumption 
correspond to the true free energy of  the system. 

With C = 0, the free energy of Hamiltonian (1) is given by 

f0 ~ ;o - t i P  = ds e-Sg[e(s)]  = In 2 + ds e -s  In cosh ~(0, s) (26) 

In order to obtain the thermodynamic properties of the system, it is thus 
sufficient to know O(m, s) for m = 0 only. This quantity represents the 
effective magnetic field that has been built up by the renormalization scheme 
at the s stage. One may thus expect that 0(0, oe) will represent the usual 
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molecular field, which may be different from zero, even when the original 
field h = 0(0, 0) is zero. Equation (22), for m = 0, describes this evolution 
of the molecular field, and we will study its behavior more explicitly with 
a specific example in the next section. 

To end this section, we would like to present some of the previously 
obtained results in a more compact  way. We define 

x =  1 - e - S  (27) 

as the flow parameter,  describing the fraction of degrees of freedom that have 
been eliminated; furthermore, we define 

h(x) = O(O, s) (28) 

as the effective magnetic field and 

Q(x) = tanh h(x) (29) 

According to (22), these quantities satisfy 

h(x) = ~[xQ(x)] (30) 

The free energy is obtained by partial integration of (26) as 

fo dh - f l F  = In 2 + In cosh h(1) - dx xQ(x) dxx 

= In 2 + In cosh h(1) - dx xQ(1 - Q2)- 1 dQ (31) 
dx 

4. EXAMPLE A N D  FURTHER A N A L Y S I S  

Let us test our results by applying them to the standard case, where 
the original Hamiltonian contains only pair interactions, apart  from an 
external magnetic field: 

and thus 

e(m, O) =hom + �89 2 (32) 

49(rn) = ho + bm (33) 

From (30) we see that h(x) satisfies the equation 

h(x) = h o + bx tanh h(x) (34) 

The free energy may be obtained from (31), in combination with the above 
formulas, as 

- f l F  = In 2 + In cosh h(1) - �89 tanh 2 h(1) (35) 
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The magnetization (m} can then be derived as 

(m} = - f l  c3F/Oh o = tanh h(1) = tanh(ho + b(m)) (36) 

which is the usual mean-field equation. 
It is well known that below criticality, i.e., for b > 1, and for sufficiently 

small values of  ho an equation like (36) formally also allows a metastable 
and an unstable solution. It should, however, be remembered that h(x) is a 
continuous function of x. If  we solve (34) graphically by looking at the 
intersection of  the functions f l (h)  = h - ho and f2(h) = bx tanh h for b > 1 
and for increasing values of  x (see Fig. 1), we find that only the stable 
solution of (36) can be attained in a continuous way when x tends to unity. 
The condition of  continuity for our renormalization trajectory thus selects 
in a unique way that solution of  Eq. (36) which corresponds to the stable 
thermodynamic state. In Fig. 2 we sketch the behavior of  h(x) for b > 1 and 
a positive h0. It is clear that the continuity criterion forces us to disregard 
the disconnected part of  the curve (dashed line). Above criticality, i.e., for 
b < l, the curve would have only one branch. When ho = 0, the solutions 
for h(x) become symmetric about the x axis (Fig. 3). The solid line in Fig. 3 
should be considered as h(x) in the limit ho ~ + 0. 

In this example it could thus be seen that with our renormalization 
approach we indeed obtain the correct results, even below the critical point 
and with an external magnetic field. This means that the assumption C = 0 
made in Eq. (25) was justified, contrary to what happened in other 
calculations. (11'12) It is natural to ask how general is this result. 

h" h "  

_h/o 

f(h) fl=h-ho 

~bx3~anh h 

bx2tanh h 
F 1 

bxl tanh h 

I I I ~ ,  

h(xl) h(x2) h (x31 h 

Fig. 1: Graph ica l  so lu t ion  of  Eq. (34) for x 1 < x 2 < x 3. I f x  3 = 1, h" gives the uns tab le  so lu t ion  

of  the molecu la r  field equa t ion  (36) and  h' the me tas t ab le  one. They  do  not  be long  to a 
c o n t i n u o u s  funct ion  h(x) for 0 < x < 1. 
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Fig. 2. Roo t s  of  Eq.  (34) for the typical  examPle  b = 2, h 0 = 0.05. On ly  the solid l ine cor responds  
to a con t inuous  funct ion  for 0 < x < 1. 
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Fig.  3. R o o t s  of  Eq. (34) for b = 2 and  h 0 = 0. The  solid line co r responds  to  the con t inuous  
so lu t ion  in the l imi t  ho ~ 0 + .  
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and 

Let us therefore assume for the original Hamiltonian the general form 

e(m, O) = e*(rn) + E(rn) (37) 

q~(m) = ~*(m) + O(m) (38) 

where, of  course, O ( m ) =  L;(m). From (6) and (17) we see that the exact 
expression for the free energy is given in this case by 

- /~F  = in 2 + E(rh) (39) 

where rh represents the absolute maximum of E(m). This implies that rh 
satisfies 

ff(n~) = 0 (40) 

but this is not sufficient to determine uniquely the correct rh, since all m values 
that correspond to some extrema of E(m) satisfy this equation. We must 
now compare our renormalization result (31) with this exact result (39). 

Using our definitions (37)-(38) in (28)-(30), we have 

tanh -1 Q = tanh -1 xQ + ~p(xQ) (41) 

For  x = 1, this means that O[Q(1)] = 0, so Q(1) satisfies Eq. (40), and it 
may eventually be identified with the magnetization rh, as in the pair- 
interaction example, with (36). I f  we take the derivative of  (41) with respect 
to x, we see that 

(1 - Q2)- I dQ dx - [(1 - xZO2) -1 + ~b'(xQ)] d(XQ)dx (42) 

and, using this in (31), we obtain 

(e~l) fQ~I) - f l F -  In 2 = - dy y~'(y) = dy ~k(y) = El-Q(1)] (43) 
do do 

This is the desired result (39). 
We are left with the problem of determining whether the value of Q(1), 

belonging to a continuous function Q(x) for 0 < x < l, really corresponds to 
rh, the absolute maximum of E(m), and not to some other extremum. It is 
easy to see that this is not always the case. Indeed, Eq. (41) can be solved 
graphically if we write it, e.g., under the form 

Q(1 - x)/(1 - xQ 2) - tanh r (44) 

In order to avoid the problems with spontaneous symmetry breaking, let us 
assume that there is an initial magnetic field h o > 0 present, and let us take 
for E(m) and $(m) the form sketched in Figs. 4a and 4b. The left-hand 
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I 
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i 
I 

cl 

m 
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q~ 

ho 

~ ~ 

m 

b 

Fig. 4. Sketch of the behavior of (a) the function E(m) and (b) O(m), for which we do not 
obtain the correct value for the free energy if we assume C = 0 in (25). The Q(1) becomes 
equal to rh instead of rh. 

side of (44) is always positive for 0 < x, Q < 1, and the tanh in the right- 
hand side preserves the sign of its argument. A simple graphical construction 
then shows that Q(x) will tend to ~,  when x goes to unity, and not to the 
value rh that maximizes E(m). It can actually be seen that in the general case 
Q(1) will always be equal to the value of m that corresponds to the first 
maximum'encountered in the direction of the magnetization h0. 

In these special cases, where Q(1) corresponds to an extremum, but not 
the absolute maximum of E(m), our conclusion must be that the constant C 
of (25) is not zero, but 

C = E[Q(1)] - E(rh) (45) 

In the next section we will see that, within the above general renormaliz- 
ation scheme, it is always possible to find appropriate modifications of the 
process of resummation of the free energy, expressed by the basic equation 
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(24), in such a way that this free energy is given by an integral expression 
as in (25), with the constant C strictly equal to zero. 

5. E Q U I V A L E N T  E X P R E S S I O N S  FOR T H E  FREE E N E R G Y  

When defining our transformation in Section 2, we had to impose 
e'(0) = e(0) ( =0 )  in order to determine both e'(m) and g from the single 
equation (9). This particular choice, however, is quite arbitrary; in other 
words, there is no unique way of  identifying e' and 9 from (9). We could, 
e.g., as well impose the condition 

e'(M) = e(M) (46) 

for some arbitrary M ([M[ ~< 1), and more generally, 

e(M, s) =- e(M) for all s (46') 

According to (10), this leads to 

9 = gM = in 2 + In cosh 0(M) - MO(M) + e(M) (47) 

One can easily check that the corresponding modification in the definition 
of  e' does not change the differential equation (15) for ~, since the additional 
terms disappear when taking the derivative with respect to M. This means 
that the solutions (22) for the trajectories ~;(m, s) in the interaction space are 
unaltered, and that they do not need to bear a subscript M, a s  9M. The 
basic difference with the previous section lies in the expression for the free 
energy, which can now be written as 

- f l F =  C(M) + f o  ds e-~gM 

fo o = C(M) + In 2 + e(M) + ds e-S[ln cosh O(M, s) - M~(M, s)] (48) 

The question that we now want to investigate on the basis of this equation 
is how C(M) behaves and, in particular, whether we can find some values of M 
for which C(M) = O. 

First of all, it is easy to show that C(M) must be a step function. Indeed, 
if we assume that the derivative of C(M) exists for a given value of M, then 
this derivative is zero. This can be shown by differentiating (48), where the 
free energy is of  course constant with respect to M: 

;o { } 0 = d(M) + O(M, O) + ds e-S [tanh O(M, s) - M]  ~ -  O(M, s) (49) 
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Using the differential equation (15), we can transform (49) to 

fo C(M) + O(M, O) = - ds ~s [O(M, s)e-~] = ~(M, O) 

and thus 
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(50) 

C(M) = 0 (5t) 

This equation holds almost everywhere, but not for those values of M 
that are points of instability for the renormalization flow. For  such values 
of M it would not be legitimate to interchange the integral in (48) with the 
differentiation with respect to M. 

After establishing this step-function character of C(M), let us now 
determine the discontinuities in C(M). Using again our definition (27) for x, 
we may write after separate partial integrations for each term in the integrand 
of (48) 

- f l F  - C ( M )  - In 2 - e ( M )  

= dx [In cosh ~(M, x) - MO(M, x)] 
0 

= In cosh ~(M, 1) - MO(M, O) 

fo  ~k(M, x) - dx Ix  tanh O(M, x) + M(1 - x)] c~x (52) 

Introducing now the definitions 

Q(x) = tanh O(M, x) (53) 

Z(x) = xQ(x)  + M(1 - x) (54) 

these quantities satisfy, from (22) and (38), the condition 

tanh-  1 Q = tanh-  1 Z + O(Z) (55) 

Since Z(1) = Q(1), it follows that 

~b[Q(1)] = 0 (56) 

or Q(1) is again one of the values of m that correspond to an extremum 
of E(m). From (55) it follows also that 

(1 - Q2)-IQ, = [(1 - z2) -1 + q / ' ( z ) ] z '  (57) 
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This may be substituted in the free energy calculation (52): 

flF + C(M) + e(M) - MO(M, 0) + In 2 cosh O(M, 1) 

= dx Z(x)(1 - Q2)- 1Q, _._ dx Z[(1 - Z 2) - 1  ..1_ I/] '(Z)]Z' 
o 

,~ Q ( 1 )  t Q(1) = [ - �89  - Z 2) + ZO(Z)J M dZ O(Z) 
.)M 

= In cosh k(M, 1) + 1 in(1 - M 2) - M•(M) - E[Q(1)] + E(M) 

Using now the explicit expressions (4) and (17) for e*(m), we immediately 
obtain 

- f l F  = in 2 + C(M) + E[Q(1)] (58) 

The behavior of  C(M) is thus completely determined by Q ( 1 ) =  
tanh 6(M, s = oe). The quantity C(M) remains constant as long as M is 
varied inside a range of  values which have the same limit for tanh O(M, s) 
as s goes to infinity. Due to (56), the possible limiting values for this function 
are given by the roots of  r i.e., the roots ml of  the equation 

m = tanh ~b(m) (59) 

A straightforward but important  property of  the solutions ~(m, s) of  
our flow equation (15) is that the roots mi(s ) of  the equation 

m = tanh ~(m, s) (60) 

are constant with respect to s; they are thus equal to the roots mi of  Eq. (59), 
and no new roots appear. 

Since for finite s the function O(m, s) is expected to remain continuous 
with respect to m, the discontinuities in the step function k(m, oe) are expected 
to occur at m values where t?O/~?m goes to infinity when s becomes infinite. 
According to (15), this infinite slope can only be found for the values mi 
that obey (60). 

Not  all these values m~, however, give rise to a discontinuity in O(m, ~ ) .  
F rom (15) we see that Oi/~?s changes its sign at the m~. This means that, 
for growing s, the function k(m, s) becomes either more flat or more steep 
at these points, depending on the sign of (m - tanh ~) ~g/am. Let us clarify 
this by a typical situation in Fig. 5, where we have sketched ~,(m) with, 
e.g., three roots, and the corresponding curve tanh ~b(m) = tanh g(m, 0). This 
last curve intersects the m line at these three roots of  ~,. In every interval 
we can look for the sign of  t?O/t?s, and we have indicated the corresponding 
renormalization flow of the function tanh g(m, s) by arrows in Fig. 5. From 
this it can be seen that a discontinuity will only appear  at the root mz, where 
~'(rn) is positive, and, as a consequence, E(m) has a relative minimum. 
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m 

Fig. 5. Schematic re ~resentation of the renormalization flow of the function tanh k(m, s). 
The roots of ~(m) are ml, m2, and m3, and for these values of m we have m = tanh qS(m) = 
tanh k(m, s) for all s. The step function indicated by the broken line and the isolated point 
at (m2, m2) is the limit function tanh ~(m, ~). 

One can easily verify the generality of  this result. The Q(1) and, 
according to (58), also C(M) are step functions of  M with discontinuities at 
the values of  M that correspond to the minima of E(M). Comparing further- 
more (58) with the exact result (39), we find that there is a whole range of 
M values for which C(M) = 0 and for which the integral expression in (25) 
gives the full free energy of the system. This range of M values is the 
interval between two neighboring minima of E(m), which contains the 
absolute maximum of this function. 

Although the step function 0(m, 0o) is a fixed-point solution of Eq. (15) 
for O(m,s), its integral e(m, s) is.not a fixed-point solution of Eq. (14). A 
function e(m) with a piecewise constant derivative does not satisfy (14), 
unless we insert discontinuous jumps, proportional  to e S, at the points of  
discontinuity of  the derivative. These jumps in e(m, s --* ~)  are caused by 
divergences which build up in ~(m, s) in a very narrow region around the 
discontinuities and give rise to a delta-function contribution to the limit 
s ~ ~ .  (For simplicity, we did not try to represent these divergences in 
Fig. 5.) An asymptotic solution e(m, s) for large s values is then formed by 
pieces of  constant slope, which are moving with respect to one another either 
in the direction of positive or in the direction of negative energy values. 
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One section, however, is fixed by our normalization condition e(M, s)= 
e(M, 0). The free energy F(s), defined in (23), will then also be an exponential ly 
growing function of  s, unless all the moving sections of  e(m, s) are shifting 
toward negative values. It is clear that this will depend on the choice of the 
normalization point M. 

6. T R A N S F O R M A T I O N  W I T H  M O D I F I E D  SPIN  V A R I A B L E S  

Up to now, in the discussion of our renormalization approach, we have 
put emphasis almost exclusively on the direct computation of the free energy 
as an integral along the renormalization trajectory. The conventional 
technique is to describe the critical properties of the system by analyzing the 
transformation in the proximity of the fixed point, without aiming at a 
global solution for the thermodynamic functions. In this section we show 
that this kind of analysis is also feasible within our infinitesimal approach. 

Our method will be based on a simple infinitesimal "equivalence" 
transformation, which, combined with the decimation procedure of Section 2, 
allows us to construct a parameter-dependent class of infinitesimal trans- 
formations. This class can be viewed as an infinitesimal generalization of  
the transformations described by Knops et al. ~4) 

Let us first introduce a simple free-energy-conserving transformation of 
our spin variables, which does not reduce the number of  degrees of  freedom. 
We will use a set of  new spin variables Sj' (j  = 1 ..... N) and we will link 
them to the old ones by means of weight functions t(Sj, Sj) according to 
the transformation scheme 

Tr/s ~ exp[Ne(m)] = Tr{s, 1 Tr/s / 1-[ [t(Sj, Sj')] exp[Ne(m)] 
J 

= Tr/s, } exp[Nff(m') + if] (61) 

with t obeying the normalization condition 

Yr s, t(S, S') = 1 (62) 

and m' defined as 

m' = N -1 Z Sj' (63) 
J 

Since both S and S' can take only the values + 1, the only possibility is 

t ( s ,  s ' )  = �89 + pss') (64) 

When p = 1, this amounts to an identity transformation t(S, S ' )= 6ss,. 
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We will choosep to be infinitesimally different from unity, i.e., by an amount 
of order N -  1 : 

p = 1 + c~/N, c~ = O(1) (65) 

The physical idea behind this transformation is to rescale the average spin 
values, The transformation of Section 2 preserves the thermal average of 
the spins, since <m> = <m'> after Eq. (9), as one can easily verify. The 
transformation that we now introduced, however, yields 

<rn'> = p<m> (66) 

The thermal averages on the right- and left-hand sides of this equation have to 
be performed with the original and transformed Hamiltonians, respectively. 

Both g and ~ are defined by (61), if we again choose some normalization, 
e.g., g(0) = e(0) as in Section 2. Equation (61) is equivalent to 

exp[d + N~(m')] = Tr{s } exp[Ne(m)] ~ @s~.s; + 3 S~Sj') (67) 

By working out the product in the right-hand side, one gets a large sum of 
different terms. Each of these terms may be written, after renumbering of 
the indices, as 

Tr{s} l~ (SjSj') 1-[ (6sis) eNer 
j = l  j = k + l  

where k is some positive integer. Neglecting terms of order N-1 in the 
exponential, this term is equal to 

~-N exp[Ne(m')] Sf e x p [ -  SfO(m')] ~, S exp[S0(m')] 
j = l  S=_+I 

= exp[Ne(m')] ~-N (Sf - tanh 0) sinh 20 
j = l  

By repeating this for all terms, we finally have 

exp[~ + Ng(m')] = exp[Ne(m')] I1 + ~ (Sf - tanh 0) sinh 20 
j = l  

~- exp[Ne(m') + �89 - tanh 0) sinh 20] (68) 

We will now combine the infinitesimal transformation of Section 2 with 
this rescaling of the spin variables. The combination of the two trans- 
formations leads in a straightforward way to an ~-dependent partial 
differential equation 

_ 30 
30 c~ sinh 2d + [tanh 0 - m + ~(cosh 20)(m - tanh 20)] (69) 
3s 2 ~mm 
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and a new g(e),  given by 

g = In 2 cosh d(0) - a sinh 2 d(0) (70) 

The fixed-point solution o f  (69) is the same as when a = 0, given by (16). 
It  is possible to const ruct  the full solution o f  (69) with the initial 

condi t ion e(m, s = 0) = ~b(m) by the method  of  characteristic curves, much 
as we did for  a = 0 in Section 3. This solution is given implicitly by 

tanh ~(m, s) = e ~s tanh 4) {e-~S[me - s  + (1 - e -s)  tanh ~(m, s)] 

+ 2e -S (m  - tanh ~) sinh as cosh z O(m, s)} (71) 

but in this form it is much more  complicated to analyze than the solution 
(22) for a = 0. Instead, we will concentrate  on a linearization a round  the 
fixed point. 

I f  

e(m, s) = e*(m)  + ~, an(s)m" (72) 
n 

where, e.g., a 1 = ho, the magnetic field, and az = ~ "~ T - T c, it is easy to 
show by a linearization o f  (69) or  (71) in the an that  

an(s) ~- an(0)e (1 -n~)s (73) 

up to correct ions o f  second order in the a, .  This result should be compared  
with (19), valid for c~ = 0. There all variables were relevant, but  here it seems 
that  the number  o f  relevant and irrelevant variables can be chosen at will, 
by varying a. A naive renormalizat ion g roup  analysis would thus seem to 
give e-dependent  critical exponents,  since it now follows for the free energy 
that 

F(e) = F({an} ) = e -~F({e  (1-n~)san}) (74) 

One way o f  solving this difficulty is to consider the free energy in (74) 
not  only as a generalized homogeneous  function o f  the an, described with 
a parameter  s, but  as a function whose properties are determined by two 
parameters  s and a, or alternatively by s and 2 = e -~ .  We may  then interpret 
(74) or  

F({an}) = e-~F({eS2"a,,}) (74') 

as a proper ty  that  has to hold for all s and all 2. This two-parameter  
f reedom imposes much stronger condit ions on F than does the one-parameter  
condit ion (74) for  a fixed e. 

As an application, let us investigate the consequences o f  this two- 
parameter  condi t ion on the situation where only three parameters  are present:  
al = h, a2 = ~, and a 4. We get 

F(h, "r, a4) = e-~F(2eSh, 22eS~, 24 eSa4) (75) 
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Since this must hold for all 2, F can only be a function of certain 
combinations of  its three parameters;  and it may be written as a new function 
of two independent combinations, e.g., 

F(h, "c, a4) = G(h2/z, "c2/a4) = e-SG(eSh2/~, eSzZ/a4) (76) 

Since this must hold for all s, G(x, y) must be a homogeneous function of 
the first degree in x and y. For h = 0 this means 

F(0, "c, a4) --~ "c2/a,, (77) 

This eventual singular dependence on a4 was described in Ref. 4 as the 
appearance of a dangerous irrelevant variable. I f  we ask F to be finite 
for r = 0 and h # 0, this implies from (76) that 

F(h, O, ar ~ (h4/a4) x/3 (78) 

The critical exponents may then be determined. For example, f rom (77) and 
(78), it follows immediately that e = 0, 6 = 3. An analogous analysis for 
OF/Oh and c32F/~3h 2 at h = 0 gives/~ = 1/2 and 7 --- 1. 

7. C O N C L U S I O N S  

We have shown in this paper that it is possible to derive the full 
thermodynamic behavior of a van der Waals spin model by solving the 
differential renormalization equation obtained after summing out a single 
spin variable. A crucial problem was the determination of the integration 
constant C appearing in the full solution (25) or (48) for the free energy 
equation. We have been able to show that in all cases, at least for a certain 
set of  normalizations on the transformed Hamiltonians,  this constant takes 
the value zero. One could hope that also in other situations, like those 
considered in Refs. 11 and 12, the troublesome constant may be eliminated 
by imposing conditions analogous to (46). 

The nature of  the fixed point, in our simplest renormalization procedure, 
is very peculiar, since all variables are relevant. We have modified this pro- 
cedure go as to keep 0nly a few relevant variables. The usual linearization 
analysis in the neighborhood of the fixed point can then be performed. 
We have shown how the extra freedom of  the transformation, manifested 
by the presence of a free parameter  e, leads to a strong limitation on the 
possible functional form of the free energy. 

Since the method presented here is very simple, it is rather flexible and 
one can easily adapt  it to treat, e.g., van der Waals model with higher 
dimensional spin variables, both in the classical and quantum cases. 
Generalizing the above scheme to the case in which the forces are not 
strictly infinitely long-ranged is a completely open problem. We are 
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i n v e s t i g a t i n g  fo r  the  m o m e n t  the  p r o m i s i n g  d i r e c t i o n  o f  i m p o s i n g  s tochas t i c  

G l a u b e r  d y n a m i c s  on  o u r  sy s t em;  one  m a y  t h e n  t ry  to  p e r f o r m  a d y n a m i c  

r e n o r m a l i z a t i o n  ca l cu l a t i on ,  s t a r t i ng  f r o m  the  s ta t ic  s c h e m e  tha t  was  

d i scussed  here.  
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